Fe-N-C氧还原电催化剂中FeN4位点微观环境的调节 | Science Bulletin
文章
20
22
速递
Tailoring the microenvironment in Fe–N–C electrocatalysts for optimal oxygen reduction reaction performance
Qing Wang, Ruihu Lu, Yuqi Yang, Xuanze Li, Guangbo Chen, Lu Shang, Lishan Peng, Dongxiao Sun-Waterhouse, Bruce C.C. Cowie, Xiangmin Meng, Yan Zhao, Tierui Zhang, Geoffrey I. N. Waterhouse
Science Bulletin, 2022, 67(12): 1264–1273
doi: 10.1016/j.scib.2022.04.022
简介
Fe-N-C电催化剂, 即FeN4单原子位点负载于氮掺杂的碳载体上, 是一种优良的氧还原催化剂, 有望取代贵金属铂催化剂, 应用于金属空气电池和燃料电池. 目前, 提高Fe-N-C材料氧还原性能的策略包括: (1)提高铁单原子活性位点的数目; (2)调节铁单原子中心与含氧中间体的吸附能, 从而提高本征活性. 该工作报道了一种简单NaCl熔盐煅烧Fe掺杂金属有机配合物前驱体(Fe-ZIF)的方法, 可有效提高煅烧产物Fe-N-C催化剂中FeN4单原子位点数量和本征活性. 原位透射电子显微镜(TEM)实验结果表明:在高温煅烧过程中, NaCl蒸发后沉积附着在Fe-ZIF颗粒表面, 加速Fe-ZIF中配体的分解和锌中心的挥发, 从而使煅烧产物中碳载体呈多孔结构, 并改变Fe单原子位点的配位环境. X射线吸收谱进一步表明, 该Fe-N-C催化剂中Fe单原子位点的Fe-N键变长, Fe的氧化态降低, 从而有利于氧还原反应中间体的脱附. 因此, 针对碱性氧还原反应过程, 该催化剂表现出比商业化铂碳催化剂更优异的性能, 并可作为锌空气电池阴极催化剂, 用于手机充电.
图文导读
Fig. 2. (a) Fe K-edge XANES spectra for r-Fe–NC, Fe–NC and FePc. (b) Fe K-edge XANES spectra for r-Fe–NC, Fe–NC and reference materials. (c) Fe L-edge XANES spectra for r-Fe–NC and Fe–NC, (d) Fe K-edge XANES spectra for r-Fe–NC collected in air and in 0.1 mol L−1 KOH solution. (e) Fourier-transformed Fe K-edge EXAFS spectra plotted in R space and (f) EXAFS fitting results and the FeN4O2 structure for r-Fe–NC, whereas the rose, blue and light yellow spheres represent Fe, N and O atoms, respectively.
Fig. 3. (a) ORR LSV curves. (b) Jk at 0.80 V and E1/2. (c) Tafel slope. (d) Electron transfer number and H2O2 yield plots for r-Fe–NC, Fe–NC and Pt/C electrocatalysts.
Fig. 4. (a) Discharge polarization curves and corresponding power density versus current density curves. (b) Long-time galvanostatic discharge curves. (c) Discharge curves at the current densities of 10 mA cm−2 for a zinc–air battery using r-Fe–NC as the air cathode electrocatalyst (changing the electrolyte every 24 h). (d) Open circuit voltages (OCV) for three zinc–air batteries in series, and a demonstration of smart phone (Huawei) charging by three zinc–air batteries linked in series.
Fig. 5. (a) Structural models for FeN4C8 and N-doped FeN4C8, where different atoms are represented by different colors, i.e., H (white), C (gray), N (blue), and Fe (gold). (b) Fe–N bond distance and Bader charge for model FeN4C8 and N-doped FeN4C8. (c) The free energy diagram for the ORR on FeN4C8 and N-doped FeN4C8.
通讯作者
Geoffrey I.N. Waterhouse 奥克兰大学教授. 主要研究方向: 太阳能捕获技术、光催化、光子带隙材料和生物传感器.
张铁锐 中国科学院理化技术研究所研究员. 主要研究领域与兴趣: 能量转换纳米催化材料.
赵焱 武汉大学教授. 主要研究方向: 多尺度多场耦合仿真、计算材料模拟、纳米材料、新能源催化、3D打印.
相关阅读
【论文合集】电催化CO2还原
超低铂合金与纳米碳结构直接集成的高效氧还原催化剂的设计
双金属MOF衍生的Ru掺杂Cu基电催化材料在碱性介质中的高效析氢
栏目介绍
论文 Article
报道具创新性和重要科学意义的最新科研成果(一般不超过10个印刷面,附250字左右摘要,4-6个关键词,图表不超过10个,参考文献不超过60条)。